
### MISSISSIPPI GEOLOGICAL SOCIETY

# eBULLETIN

Volume 66 No. 7 March 2018





www.missgeo.com



# MGS 2017-2018 BOARD OF DIRECTORS

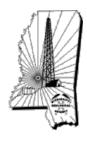
### **Officers**

| President          | David Hancock    | Roundtree & Assoc. | david@roundtreeinc.com        | (601) 355-4530 |
|--------------------|------------------|--------------------|-------------------------------|----------------|
| 1st Vice President | David Dockery    | MDEQ               | ddockery@mdeq.ms.gov          | (601) 961-5171 |
| 2nd Vice President | Joe Johnson      | Spooner Petroleum  | jjohnson@spoonercompanies.com | (601) 969-1831 |
| Treasurer          | Bill Bagnall     | BLM                | wbagnall@blm.gov              | (601)-919-4651 |
| Webmaster          | Steve Walkinshaw | Vision Exploration | steve@visionexploration.com   | (601) 607-3227 |
| Advertising        | Matt Caton       | Tellus Operating   | mcaton@tellusoperating.com    | (601) 898-7444 |
| Editor             | Matt Caton       | Tellus Operating   | mcaton@tellusoperating.com    | (601) 898-7444 |

### **Boland Scholarship**

| President | David Dockery   | MDEQ                  | (601) 355-4530 |
|-----------|-----------------|-----------------------|----------------|
| Secretary | Neil Barnes     | Independant           |                |
| Members   | Joe Johnson     | Spooner Petroleum     | (601) 969-1831 |
|           | Tony Stuart     | Venture Oil & Gas     | (601) 428-7725 |
|           | James Starnes   | DEQ                   |                |
|           | Bob Schneeflock | Geodigital Consulting | (601) 853-0701 |
|           | Dave Cate       | Pruet Oil             |                |
|           |                 |                       |                |

### Honorary Membership


| Chairman | Charles H. Willian | ns, Jr. Vaughey & Vaughey | (601) 982-1212 |
|----------|--------------------|---------------------------|----------------|
| Members  |                    |                           |                |
|          | Jerry Zoble        | Independant               |                |

### MGS Representatives

| AAPG  | Maurice Birdwell | Independent   | (601) 936-6939 |
|-------|------------------|---------------|----------------|
| GCAGS | Danny Harrelson  | U.S. Army R&D | (601) 634-2685 |

### Other

| Environmental | John Ryan    | Allen       | (601) 936-4440 |
|---------------|--------------|-------------|----------------|
| Historian     | Stanley King | Independent | (601) 842-3539 |



## PRESIDENT'S LETTER

### David Hancock



We had a good turnout last month despite the conflict with NAPE. Dr. David Dockery did an excellent presentation on a plethora of geologic topics around Mississippi. Very informative and as always, interesting. Thanks David! This month we will have masters student, Theresa Woehnker present her research on the Cotton Valley formation. The title of her thesis is "Analysis of the Cotton Valley Group in the northeastern Mississippi Interior Salt Basin". Since the oil and gas downturn and the rise of the shale plays, not much effort and research has been put into the conventional plays. The Cotton Valley continues to be one of our more prolific formations and I am looking forward to Theresa's discussion.

Next month will be the Boland Scholarship presentations where we will be honoring students from the four in state Universities and Colleges that offer degrees in the geological sciences. We will also present the Justin Johnson award based more on perseverance and attitude under hardship. The Boland Committee, led by Neil Barnes, is interviewing candidates as I write. Please come and support the students as they receive their awards. We may have some surprise awards of our own. More on that next month. See ya Thursday!

| 2017-2018 MGS MEETING SCHEDULE |                                                                       |                            |  |  |  |  |  |
|--------------------------------|-----------------------------------------------------------------------|----------------------------|--|--|--|--|--|
| When                           | What/Who                                                              | Where                      |  |  |  |  |  |
| September 14, 2017             | Fall BBQ                                                              | Jackson Yacht Club-5:30pm  |  |  |  |  |  |
| October 12, 2017               | EZAT HEYDARI<br>The Last Delta on Mars                                | River Hills – 11:30am      |  |  |  |  |  |
| November 7, 2017               | Todd Kiefer<br>Update: Energy & Power: Global Influences              | River Hills – 11:30am      |  |  |  |  |  |
| December 25, 2017              | Merry Christmas                                                       |                            |  |  |  |  |  |
| January 11, 2018               | EZAT HEYDARI The Cause and Consequences of the End-Permian            | River Hills – 11:30am      |  |  |  |  |  |
| February 8, 2018               | Dr. David T Dockery III, RPG Applying Geology to Environmental Issues | River Hills – 11:30am      |  |  |  |  |  |
| March 8, 2018                  | Theresa Woehnker Analysis of the Cotton Valley Group                  | River Hills – 11:30am      |  |  |  |  |  |
| April 12, 2018                 | Boland Scholarship Awards                                             | River Hills – 11:30am      |  |  |  |  |  |
| May 10, 2017                   | Spring Fling                                                          | Jackson Yacht Club- 5:30pm |  |  |  |  |  |

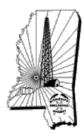
| M          | ES             | STRATIGRAPHIC UNIT |                                 |                    |                        |  |  |  |  |  |
|------------|----------------|--------------------|---------------------------------|--------------------|------------------------|--|--|--|--|--|
| SYSTEM     | SERIES         | EAST TEXAS         | S. ARKANSAS,<br>N. LOUISIANA    | S. MISSISSIPPI     | SW ALABAMA,<br>FLORIDA |  |  |  |  |  |
|            | Miocene        |                    |                                 |                    |                        |  |  |  |  |  |
|            | · 6.           |                    | Frio                            | Frio               | Tampa                  |  |  |  |  |  |
|            | Olive,         |                    | Vicksburg                       | Vicksburg          | rampa                  |  |  |  |  |  |
| Æ          |                |                    | Jackson                         | Jackson            | Jackson                |  |  |  |  |  |
| TERTIARY   |                | Yegua              |                                 |                    |                        |  |  |  |  |  |
| Ë          | ē              | Cook Mountain      |                                 |                    |                        |  |  |  |  |  |
|            | Eoceme         | Sparta             | Claibama Casum                  | Claibama Casa      | Claibama Cour          |  |  |  |  |  |
|            | ш              | Queen City         | Claiborne Group                 | Claiborne Group    | Claiborne Group        |  |  |  |  |  |
|            |                | Reklaw             |                                 |                    |                        |  |  |  |  |  |
|            |                | Carrizo            |                                 |                    |                        |  |  |  |  |  |
|            | ó e            | Wilcox Group       | Wilcox Group                    | Wilcox Group       | Wilcox Group           |  |  |  |  |  |
|            | Paleo-<br>cene | Midway             | Midway Monroe                   | Midway Selma       | Midway                 |  |  |  |  |  |
|            |                | Navarro            | Nacatoch Gas Rock               | Gas Rock<br>Selma  | Selma                  |  |  |  |  |  |
|            | <u>.</u>       | Taylor             | Ozan/Annona                     | Seima              |                        |  |  |  |  |  |
|            | Upper          | Austin             | Austin/Tokio                    | Eutaw              | Eutaw                  |  |  |  |  |  |
|            | Eagleford      |                    | Eagleford                       | Eagleford          | Tuscaloosa Group       |  |  |  |  |  |
| ns         |                | Woodbine Group     | Tuscaloosa Group                | Tuscaloosa Group   | ruscaloosa Group       |  |  |  |  |  |
| Si.        |                | Buda Limestone     |                                 |                    |                        |  |  |  |  |  |
| Ι¥C        |                | Georgetown         |                                 |                    |                        |  |  |  |  |  |
| CRETACEOUS |                | Frederickburg      |                                 |                    |                        |  |  |  |  |  |
| _          | 10             | Paluxy             | Paluxy                          | Paluxy             | Paluxy                 |  |  |  |  |  |
|            | Lower          | Glen Rose subgroup | Glen Rose subgroup              | Glen Rose subgroup | Glen Rose subgroup     |  |  |  |  |  |
|            |                | James Limestone    | James Limestone                 | James Ls.          |                        |  |  |  |  |  |
|            |                | Pettet             | Sligo                           | Sligo              | Sligo                  |  |  |  |  |  |
|            |                | Travis Peak        | Hosston                         | Hosston            | Hosston                |  |  |  |  |  |
|            |                | Cotton Valley Gp.  | Cotton Valley Gp.<br>Gilmer Ls. | Cotton Valley Gp.  | Cotton Valley Gp.      |  |  |  |  |  |
|            | -e             | Havnesville        | Havnesville                     | Havnesville        | Haynesville            |  |  |  |  |  |
| 0          | Upper          | Buckner            | Buckner                         | Buckner            | Buckner                |  |  |  |  |  |
| SSIC       |                | Smackover          | Smackover                       | Smackover          | Smackover              |  |  |  |  |  |
| JURASSIC   |                | Norphiet           | Norphlet                        | Norphiet           | Norphlet               |  |  |  |  |  |
| 5          | 9              | Louann Salt        | Louann Salt                     | Louann Salt        | Louann Salt            |  |  |  |  |  |
|            | Middle         | Werner             | Werner                          | Werner             | Werner                 |  |  |  |  |  |
|            | AS-<br>IC      | Eagle Mills        | Eagle Mills                     | Eagle Mills        | Eagle Mills            |  |  |  |  |  |

| OFFICERS MEETINGS    |
|----------------------|
| September 12, 2017   |
| October 10, 2017     |
| November 6, 2017     |
| January 9, 2018      |
| February 6, 2018     |
| <b>March 6, 2018</b> |
| April 10, 2018       |
| May 8, 2018          |



# **MGS MARCH SPEAKER**

### Theresa Woehnker


#### Analysis of the Cotton Valley Group in the Northeastern Mississippi

#### **Interior Salt Basin**

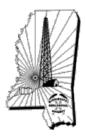
Theresa A. Woehnker, The University of Southern Mississippi

#### Abstract

The Mississippi Interior Salt Basin (MISB) is a major negative structural feature in the interior onshore northeastern Gulf of Mexico. The Cotton Valley Group is an Upper Jurassic - Lower Cretaceous subsurface siliciclastic unit that has been studied extensively in the MISB for the last several decades because of its high potential as a reservoir rock. In this study, the Cotton Valley Group is subdivided into Upper and Lower units. The Upper Cotton Valley is predominately finer grained deltaic sediment, while the Lower Cotton Valley is mostly coarser grained sands from a channel or bar system. The Upper Cotton Valley is further subdivided into an upper Dorcheat Member, and a lower Shongaloo Member, where the boundary between these units correspond to a maximum flooding surface, which can be seen on an electric log. By following an outlined methodology and identifying significant log signatures within the Upper Cotton Valley Group, the various sand units can be classified and correlated across the study area. Preparation of structural and stratigraphic cross sections have been done to display the structural configuration and stratigraphic sequences of the Cotton Valley Group. This study also provides an understanding and comparison of well production within the Upper and Lower Cotton Valley Group. Although most of the traps in the MISB are from salt-related structures, this study attempts to identify potential targets for stratigraphic traps. Since hydrocarbon entrapment is directly related to the percentage of sand to shale, identifying significant changes in percent net sand within the Upper Cotton Valley reservoir may indicate locations of such traps.



### Dr. David T. Dockery lll RPG


#### **GULF COAST GEOCHRONOLOGY**

David T. Dockery III, RPG

The Gulf Coastal Plain of the southeastern United States contains a wealth of fossil data, which is useful for correlating formations with the relative ages of the global geologic column, but lacks the igneous and metamorphic rocks with radioisotopes that can give an absolute age in millions of years. Exceptions to this are the occasional ash beds and bentonites with crystals of volcanic origin, which punctuate the sedimentary sequence. In 1986, I received a letter (dated April 3, 1986) from Bill Berggren of Woods Hole Oceanographic Institution requesting help collecting bentonite samples for John Obradovich of the U.S. Geological Survey to determine their radiometric age. Enclosed in the letter were Obradovich's occurrence data sheets for bentonites in Mississippi. We first visited a bentonite bed in the Yazoo Clay at Satartia, Mississippi (figures 1-2), and sent samples to Obradovich.



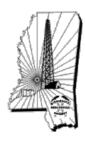
Figure 1. Bob Merrill examining a bentonite in the Yazoo Clay along the bluff line at Satartia in Yazoo County, Mississippi. Picture (slide 171-17; Image 1685) taken on May 13, 1986.




### Dr. David T. Dockery lll RPG



Figure 2. Bentonite bed in the Yazoo Clay along the bluff line at Satartia in Yazoo County, Mississippi with a radiometric age of 34.28 million years old (Obradovich and Dockery, 1996). Picture (slide 171-13; Image 1686) taken on May 13, 1986.

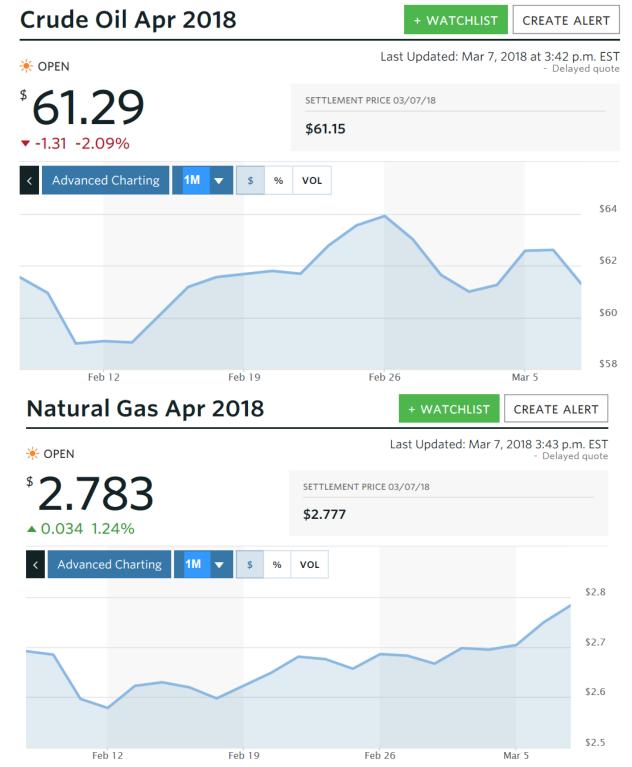

On May 20, 1986, Obradovich responded, "I have made a preliminary examination of a small portion of the bentonite that you sent. The biotite is somewhat leached, and I won't know until further work is done whether it will be suitable or not. Nonetheless, the basal level of the bentonite that you sampled is crystal rich with copious sanidine crystals. This is more than I expected and is even better material to work with. I wish that we could be this fortunate with every bentonite, but I've examined enough to know that this is unusual."



### Dr. David T. Dockery lll RPG

Thus began the search for Mississippi bentonites for John Obradovich, extending from formations of the Cretaceous to the Oligocene age. Some of the results were published while others were given as personal communication. Obradovich passed in 2012, leaving twenty ready-for-publication papers unpublished (according to David Sawyer). We feared that the work on some of the Mississippi age dates might be lost. On January 31, 2018, I received an email from Obradovich's colleague David Sawyer, stating: "I was a friend and colleague of John Obradovich (1930-2012) at the USGS in Denver. Somehow, I ended up with the legacy of his unpublished geochronology, as I worked with him for almost the last five years of his career. ... The data is summarized in the attached spreadsheet." Now we have Obradovich's (2006, personal communication) geochronology as recalculated by David Sawyer more than a decade later. Sawyer said the data was ours to share. See spreadsheets attached below.

|      | A                                           | В              | C    | D                | E                  | F              | G                | Н          | 1                                | J                 |
|------|---------------------------------------------|----------------|------|------------------|--------------------|----------------|------------------|------------|----------------------------------|-------------------|
| F    | ossil zone                                  | 28.201 Age     |      | Uncer            | t 28.34 TCR Age    | a95 uncert     | Irrad Run #      |            | Locality & Field Sample #        | USGS Dnum         |
| G    | lobotruncanita calcarata avg                | 75.7           | ±    | 0.47             | 75.2               | 0.47           | mean of 3        |            | AR: Anona Fm 86-O-13             | D8828             |
| G    | lobotruncanita calcarata avg                | 76.0           | ±    | 0.37             | 75.5               | 0.37           | mean of 2        |            | MS: Demopolis 93-O-01            |                   |
|      | lobotruncanita calcarata avg                | 76.1           | ±    | 0.32             | 75.6               | 0.32           | mean of 2        |            | TX-Pecan Gap chalk: TX-95-3      | D8829             |
|      |                                             | 100000         |      |                  |                    |                |                  |            |                                  |                   |
|      |                                             |                |      |                  |                    |                |                  |            |                                  |                   |
| S    | chmitzMD12 recalc age Ob93                  | 75.9           |      |                  |                    |                |                  |            | AR: Annona Fm 86-O-13            | Mark D Sch        |
|      | OO avg of 3 determinations                  | 75.7           |      |                  |                    |                |                  |            | AR: Annona Fm 86-O-13            | D8828             |
|      | OO avg of 2 determinations                  | 76.0           |      |                  |                    |                |                  |            | MS: Demopolis 93-O-01            |                   |
|      | OO avg of 2 determinations                  | 76.1           |      |                  |                    |                |                  |            | TX-Pecan Gap chalk: TX-95-3      | D8829             |
|      | est Age for mid R. calcarata zone           | 75.9           |      | 0.2              | 75.7-76.1 Ma a     | ge range has   | ed upon Ar 40/3  | 9 analytic |                                  | 00023             |
| - 28 |                                             |                | N.T. | Name of the last | 7017 7012 1110 0   | Be runge bus   | Cu apon 7 a 10/0 | o amaryere | and another turney               |                   |
|      |                                             |                |      |                  |                    |                |                  |            |                                  |                   |
| _    | adotruncana calcarata is the currer         |                |      |                  | -!- f!-!f          |                | - d Cl-b-t       |            |                                  |                   |
| K    | adotruncana calcarata is the currer         | nt name for tr | ne p | olankto          | nic toraminitera p | reviously call | ea Globotrunca   | nita caica | irata or Giobotruncana caicarata |                   |
|      |                                             |                |      |                  |                    |                |                  |            |                                  |                   |
| lı   | ndividual analyses                          |                |      |                  |                    |                |                  |            |                                  |                   |
| G    | Blobotruncanita calcarata                   |                |      |                  | 75.18              | 0.40           | GLN13            |            | AR: Annona Fm 86-O-13            | D8828             |
| G    | Slobotruncanita calcarata                   |                |      |                  | 74.91              | 0.45           | 5 JDO10          |            | AR: Annona Fm 86-O-13            | D9939             |
| G    | Blobotruncanita calcarata                   |                |      |                  | 75.47              | 0.48           | 3 JDO06          |            | AR: Annona Fm 86-O-13            |                   |
| G    | ilobotruncanita calcarata avg               | 75.68          | ±    | 0.47             | 75.19              | 0.47           | 7 mean of 3      |            | AR: Annona Fm 86-O-13            |                   |
|      |                                             | 75.92          | ±    | 0.39             |                    |                |                  |            |                                  |                   |
|      |                                             |                |      |                  |                    |                |                  |            |                                  |                   |
| G    | Slobotruncanita calcarata                   |                |      |                  | 75.40              | 0.26           | JDO13C           |            | MS: Demopolis 93-O-01            | No exact lo       |
| G    | Blobotruncanita calcarata                   |                |      |                  | 75.61              | 0.48           | GLN13            |            | MS: Demopolis 93-O-01            |                   |
| G    | ilobotruncanita calcarata avg               | 76.01          | ±    | 0.37             | 75.51              | 0.37           | 7 mean of 2      |            | MS: Demopolis 93-O-01            |                   |
|      |                                             |                |      |                  |                    |                |                  |            |                                  |                   |
| G    | Slobotruncanita calcarata                   |                |      |                  | 75.49              | 0.28           | 3 JDO24          |            | TX:Pecan Gap chalk: TX-95-3      | D8829             |
| G    | Slobotruncanita calcarata                   |                |      |                  | 75.69              | 0.35           | JDO29            |            | TX-Pecan Gap chalk: TX-95-3      |                   |
| G    | ilobotruncanita calcarata avg               | 76.09          | ±    | 0.32             | 75.59              | 0.32           | 2 mean of 2      |            | TX-Pecan Gap chalk: TX-95-3      | 3                 |
|      |                                             |                |      |                  |                    |                |                  |            |                                  |                   |
|      |                                             |                |      |                  |                    |                |                  |            |                                  |                   |
| Jo   | ohn Obradovich final ages for Missi         | ssippi Eocene  | OI   | igocen           | e bentonites       |                |                  |            |                                  |                   |
| M    | lossy Grove Core depth -87 ft               | 3              | 3.8  | 8 ± 0            | .15                | 3.67 0.15      | JDO13-B:10       |            | 93-0-0                           | 5                 |
| S    | ociety Ridge = MG 169-28' = 141             | 3              | 3.9  | 5 ± 0.           | 08 3               | 3.74 0.08      | JDO13-B:08       |            | Yazoo #                          | 6                 |
| M    | lossy Grove Core depth -277 ft              | 3              | 4.5  | 5 ± 0.           | 17 3               | 4.34 0.17      | JDO13-B:11       |            | 93-O-0                           | 6                 |
| M    | lossy Grove Core depth -495 ft; detrital co | ntamination    |      |                  |                    |                | JDO13-B:12       |            | 93-0-0                           | 7                 |
| M    | IS-Yazoo exact location unknown             | 3              | 4.1  | 0 ± 0.           | 16 3               | 3.89 0.16      | JDO13-B:05       |            | Yazoo #                          | 4                 |
| M    | lossy Grove Core depth -495 ft; detrital co | ntamination    |      |                  |                    |                |                  | JD013-B:12 | JDO13-B:12                       | JDO13-B:12 93-O-0 |




# Dr. David T. Dockery lll RPG

| 100                     |         |               |          |                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|-------------------------|---------|---------------|----------|-----------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 101 Shuqalak-Evans Core |         |               |          |                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| 102                     | L       | innertC14_bid | pevents  |                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| 103                     | 0       | Depth (ft)    | Depth (n | n) Bioevents (t | type, age) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| 104                     |         | 845.591       |          | ft (mm)         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| 105                     | 803.596 | 42            | 12.8     | 200.899         | 42.0       | base Micula prinsii (N, 67.30Ma), base Pseudoguembelina hariaensis (F, 67.30)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |
| 106                     | 800.578 | 45            | 13.72    | 200.144         | 45.0       | base Micula murus (N, 69.00Ma)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |
| 107                     | 795.591 | 50            | 15.24    | 198.898         | 50.0       | base Pseudoguembelina palpebra (F, 71.75Ma)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
| 108                     | 790.604 | 55            | 16.76    | 197.651         | 55.0       | base Lithraphidites quadratus (N, 69.18Ma)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |
| 109                     | 780.598 | 65            | 19.81    | 195.149         | 65.0       | top Broinsonia parca subsp. constricta (N, 72.02Ma)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
| 110                     | 775.578 | 70            | 21.34    | 193.894         | 70.0       | top Reinhardtites levis (N, 70.14Ma)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |
| 111                     | 770.591 | 75            | 22.86    | 192.648         | 75.0       | base Gansserina gansseri (F, 72.97Ma), top Tranolithus orionatus (N, 7 top)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
| 112                     | 760.584 | 85            | 25.91    |                 | 85.0       | base function 1 age bioevent regression line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 718.590   |
| 113                     | 745.591 | 100           | 30.48    | 186.398         | 100.0      | base Arkhangelskiella maastrichtiana (N, 74.51Ma)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |
| 114                     | 725.578 | 120           | 36.58    | 181.394         | 120.0      | base Globotruncana aegyptiaca (F, 74.00Ma)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |
| 115                     | 575.578 | 270           | 82.30    | 143.894         | 270.0      | top Radotruncana calcarata (F, 75.71Ma)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |
| 116                     | 550.578 | 295           | 89.92    | 137.644         | 295.0      | base Radotruncana calcarata (F, 76.18Ma)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |
| 117                     | 545.591 | 300           | 91.44    | 136.398         | 300.0      | base Uniplanarius trifidus (N, 76.82Ma),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |
| 118                     | 539.576 |               |          | 134.894         | 442.6      | UC15cTP/UC15dTP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| 119                     | 515.604 | 330           | 100.58   | 128.901         | 330.0      | top Eiffellithus eximius (N, 75.93Ma)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |
| 120                     | 405.598 | 440           | 134.11   | 101.399         | 440.0      | base Uniplanarius sissinghii (N, 77.61Ma)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
| 121                     | 384.752 |               |          | 96.188          |            | UC15aTP/UC15bTP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| 122                     | 295.591 | 550           | 167.64   | 73.898          | 550.0      | base Ceratolithoides aculeus (N, 79.00Ma)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
| 123                     | 250.578 | 595           | 181.36   | 62.644          | 595.0      | top Lithastrinus grillii (N, 79.73Ma)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |
| 124                     | 197.668 |               |          | 49.417          |            | UC14cTP/UC14dTP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| 125                     | 60.584  | 785           | 239.27   | 15.146          | 785.0      | base Broinsonia parca subsp. constricta (N, 81.38Ma), base Bukryaster hayi (N, 81.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5Ma)      |
| 126                     | 52.436  |               |          | 13.109          |            | base C. plummerae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |
| 127                     | 40.604  | 805           | 245.36   | 10.151          | 805.0      | base Broinsonia parca subsp. parca (N, 81.43Ma) base function 2 age bioevent n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | egression |
| 128                     | 20.591  | 825           | 251.46   | 5.148           | 825.0      | presence of Dicarinella asymetrica (F, base at 86.67Ma)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |
| 129                     | 16.096  | 829           | 252.83   | 4.024           | 829.5      | presence of Arkhangelskiella cymbiformis (N, base at 83.20Ma)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |
| 130                     |         |               |          |                 |            | He in the four times are a second to the sec |           |
| 131                     | 561     |               |          | 140.250         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |



# **CURRENT PRICES**







### **JOB OPPORTUNITIES**



#### Senior Geophysicist-Geologist-01011916

#### Description

Do you have a passion for oil and gas exploration in a variety of geographies, and a desire to live in the Pacific Northwest? As a Senior Geophysicist - Geologist located at Weyerhaeuser's Seattle Headquarters, your primary responsibility will be oil and gas prospect generation and marketing on Weyerhaeuser's 13 million mineral acres, underlying our timberlands, in the continental United States.

In this role, you will have access to an extensive database of 3D and 2D seismic data, along with a sizeable geologic database. You will work with our Senior Reservoir Engineer and Land Manager to generate prospects and promote drilling activity, primarily in the North Louisiana Salt Basin and Gulf Coast regions. This role will require a high degree of proficiency with the preparation of prospect marketing packages, and with presentations to a wide variety of oil and gas companies and conventions. This position will also have the responsibility to assess oil and gas potential in a wide variety of geologic terrains, and to support real estate and timberlands divestitures and acquisitions. This role will require you to use strong interpersonal, communication, and conflict resolution skills as you work to create strategic plans and meet financial objectives for your areas of responsibility.

At Weyerhaeuser we believe trees are a remarkable resource that can, and should, be managed responsibly to make a range of products that meet human needs, while also providing recreation, wildlife habitat, and other important ecosystem benefits. For more than a century, we've been building our reputation as a leader in sustainable forest products.

#### Roles & Responsibilities

- · Generates oil and gas prospects on Weyerhaeuser lands using our extensive geophysical and geologic data bases.
- · Responsible for preparation of marketing displays and prospect presentations, in close collaboration with Oil and Gas Team.
- · Collaborates with the Oil and Gas Team to identify potential industry partners, and to promote exploration activity.
- · Responsible for expert prospect presentation and promotion to a wide variety of oil and gas companies, investors, and management.
- · Responsible for geologic and geophysical evaluation of oil and gas lease offers, in partnership with the Senior Reservoir Engineer and Land Manager.
- Responsible for geologic assessment of oil and gas potential on all Weyerhaeuser lands, including recommendations regarding acquisitions and divestitures.
- · Collaborates with Operations Team in evaluating performance and compliance with lease contracts.
- · Partners with the Oil and Gas Team for the creation of annual budgets and strategic plans.
- · Manages and maintains, along with support staff, extensive geophysical and geologic data sets.
- · Responsible for the attainment of annual leasing goals and financial objectives within area of responsibility.
- Displays strong excellent interpersonal, communication and conflict resolution skills.
- · Reports to Director, Oil and Gas, Energy and Natural Resources.

#### Qualifications

- Experience: Ten or more years of experience in the upstream oil and gas industry, with an emphasis on prospect generation and marketing in the North Louisiana Salt and Gulf Coast Basins. Strong geophysical interpretation skills are a prerequisite for this position.
- Education: Bachelor's degree (master's degree preferred) in geophysics (or geology with an emphasis in geophysics).
- Technical Skills: Ten or more years' experience in prospect generation and marketing. Full working knowledge of Kingdom geophysical software, including
  attribute analysis, and Petra geologic software is required. Candidates with expertise in salt tectonics will receive preferential consideration.
- Drive: We are looking for someone who is eager to learn, engage with subject matter experts, and look for opportunities to improve processes while applying technical expertise to ensure customer needs are met.
- · Communication: Strong communication and interpersonal skills are essential for working effectively with a diverse set of internal and external clients.

#### **About Weyerhaeuser**

We sustainably manage forests and manufacture products that make the world a better place. We're serious about safety, driven to achieve excellence, and proud of what we do. With multiple business lines in locations across North America, we offer a range of exciting career opportunities for smart, talented people who are passionate about making a difference.

We know you have a choice in your career. We want you to choose us.



## **BOLAND SCHOLARSHIP WATCH**

Faculty & Students,

Next month the Mississippi Geological Society along with the Boland Scholarship Fund will honor the most outstanding overall students for the 2017-2018 year.

Each year, the Boland Scholarship awards 1 student from each institution a check that rewards students for their hard work and dedication to the Geosciences and their community.

We look forward to seeing you next month for the presentations.

Best Regards,

Matt Caton Editor







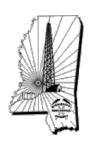


# **GEOLOGY POST**

### **ARTICLES, PAPERS or NEWS?**

**ATTENTION!!!!!** Industry, Professors and Students:

I am adding a dedicated section that includes more content from the industry and our schools.


Submissions can include anything from professional papers, thesis abstracts, job opportunities to pictures. Anything!!!!

If you have any information or news you would like to share with the Society **PLEASE** email them to the MGS Editor at:

mcaton@tellusoperating.com

Thanks & Regards,

Matt Caton Editor



# **2017-2018 BOLAND FUND DONATIONS**

Maurice Birdwell
Joe White
Louis J Lyell
Larry Baria
Charlie Morrison
Tony Stuart
Dave Cate
Bob Schneeflock
Alvin Byrd
SEI - Howard Patton

Thanks for your generous donations to the 2017-2018 Boland Fund

# **GEO LINK POST**

USGS TAPESTRY OF TIME AND TERRAIN <a href="http://tapestry.usgs.gov">http://tapestry.usgs.gov</a> The CCGS is donating to all of the 5th and 6th grade schools in the Coastal Bend. Check it out—it is a spectacular map. You might want a framed one for your own office. The one in my office has glass and a metal frame, and it cost \$400 and it does not look as good as the ones we are giving to the schools. Call Owen 510-6224 if you want one for your office for \$150. Duncan, Mike, Chris, Dave, Bob Randy, Seb., Kevin, Ken, Craig, Patrick, Robert.

FREE TEXAS TOPO'S <a href="http://www.tnris.state.tx.us/digital.htm">http://www.tnris.state.tx.us/digital.htm</a> these are TIFF files from your state government that can be downloaded and printed. You can add them to SMT by converting them first in Globalmapper. Other digital data as well.

FREE NATIONAL TOPO'S <a href="http://store.usgs.gov/b2c\_usgs/b2c/start/(xcm=r3standardpitrex\_prd)/.do">http://store.usgs.gov/b2c\_usgs/b2c/start/(xcm=r3standardpitrex\_prd)/.do</a> go to this webpage and look on the extreme right side to the box titled TOPO MAPS <a href="https://doi.org/10.2007/DOWNLOAD">DOWNLOAD</a> TOPO MAPS FREE.

http://www.geographynetwork.com/ Go here and try their top 5 map services. My favorite is 'USGS Elevation Date.' Zoom in on your favorite places and see great shaded relief images. One of my favorites is the Great Sand Dunes National Park in south central Colorado. Nice Dunes.

<u>http://antwrp.gsfc.nasa.gov/apod/astropix.html</u> Astronomy picture of the day — awesome. I click this page everyday.

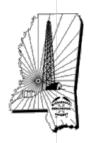
http://www.spacimaging.com/gallery/ioweek/iow.htm Amazing satellite images. Check out the gallery.

http://www.ngdc.noaa.gov/seg/topo/globegal.shtml More great maps to share with kids and students.

www.geo.org Don't forget we have our own web page.

http://micro.magneet.fsu.edu/primer/java/scienceoptiscu/owersof10/

http://asterweb.jpl.nasa.gov/galery/default.htm Great satellite images of volcanoes


http://terra.nasa.gov/gallery/ More here

<u>www.ermapper.com</u> They have a great free downloadable viewer for TIFF and other graphic files called ER Viewer.

www.drillinginfo.com This is an incredible (subscription) well and completion data service for independents. Can be demo'ed for free.

<u>http://terrasrver.com/</u> Go here to download free aerial photo images that can be plotted under your digital land and well data. Images down to 1 meter resolution, searchable by Lat Long coordinate. Useful for resolving well location questions.

http://www.fs.fed.us/gpnf/volcanocams/msh/ This is a live cam of Mt. St. Helens refreshed every 5 minutes. At the bottom are old videos of past eruptions in this cycle. It is worth a watch especially now.



# **MGS HONORARY MEMBERS**

Esther Applin\*

**Verne Culbertson\*** 

David C. Harrell\*

**Dudley J. Hughes\*** 

Walter P. Jones\*

Winnie McGlammery\*

**Maurice E. Miesse\*** 

Marvin E. Norman\*

Thurston Connell Rader\*

**Henry Toler\*** 

**Charles H. Williams** 

**David Cate** 

Paul Applin\*

H. Leroy Francis\*

Oleta R. Harrell\*

Urban B. Hughes\*

Harold Karges\*

Thomas McGlothin\*

Emil Monsour\*

Marvin L. Oxley\*

**Baxter Smith\*** 

H. Vaughn Watkins

Jerry Zoble

**Stanley King** 

Lawrence F. Boland\*

Jim Furrh\*

Ralph Hines\*

Wendell B. Johnson \*

Wilbur H. Knight\*

Frederic F. Mellen\*

William H. Moore\*

Richard R. Priddy\*

Harry V. Spooner

**Stewart W. Welch\*** 

**Julius Ridgeway** 

\* deceased

#### MEMBERSHIP APPLICATION / RENEWAL FORM

# MISSISSIPPI GEOLOGICAL SOCIETY P.O. BOX 422, JACKSON, MISSISSIPPI 39205-0422

#### 2017-2018

Membership year is June through May

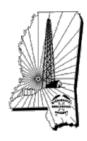
|                              |                             | nt (FREE) Associate (\$20/yr) |
|------------------------------|-----------------------------|-------------------------------|
|                              |                             |                               |
| Last Name:                   | First:                      | MI:                           |
| Mailing Address:             |                             |                               |
| Office Phone:                | Home Phone:                 | FAX:                          |
| E-mail Address:              |                             |                               |
| College/University Attended  | d:                          |                               |
| Degree(s) Obtained and Yea   | ar(s) Awarded:              |                               |
| Professional Associations, C | Certifications, & Licenses: |                               |

#### MGS ADVERTISING ORDER FORM

#### **September 2017 – May 2018**

#### I. Bulletin Advertisements:

| Size                             | Rate/Year | Amt. Remitted |
|----------------------------------|-----------|---------------|
| Full Page Ad (6" x 8")           | \$500     | \$            |
| 1/2 Page Ad (6" x 4")            | \$300     | \$            |
| 1/4 Page Ad (3" x 4")            | \$200     | \$            |
| Business Card Ad (1 1/2" x 3")   | \$100     | \$            |
| Professional Listing (1/2" x 3") | \$ 50     | \$            |


#### II. Web Page Advertisements (www.missgeo.com):

| Type of Web Page Ad       | Rate/Year | Amt. Remitted |
|---------------------------|-----------|---------------|
| Front Page Sponsor        |           |               |
| (Banner Ad – limit of 5)  | \$500     | \$            |
| Second Page Banner Ad     | \$250     | \$            |
| Professional Listing/Link | \$100     | \$            |

(Note: Please contact Steve Walkinshaw at (601) 607-3227 or mail@visionexploration.com for details concerning placing your ad on the MGS web site.)

Total Remitted \$\_\_\_\_\_

Please make checks payable to the Mississippi Geological Society. If you have any questions, contact Matt Caton at (601) 898-7444 or mcaton@tellusoperating.com



### **2017-2018 MGS MEMBERS**

Bill Bagnall Louis J. Lyell Larry Baria Tim Lyons **Neil Barnes** Ken Magee Tyler Berry John Marble Maurice Birdwell Joe McDuff Tom McMillan Randy Bissell Chris Bowen Malcom McMillan Keith Bowman Phillip Meadows Alvin Byrd Jim Michael Matt Caton **David Miller** Krista Clark Jack Moody Phil Cook Charlie Morrison

Jamie Crawford Jess New Lee Day **Pickering** Paul Day Mark Puckett **David Dockery** Jim Rawls **Dave Easom** Philip Reeves Rick Ericksen Bob Schneeflock Jim Files **Thomas Bing Seitz Bob Gaston** George Self, Jr. Roy Geoghegan George Smith Mark Getscher **Charles Smith** Tom Giosa Laura Sorey **Henry Greaves Jimmy Sparks David Hancock Lindsey Stewart** William Haworth James Stephens

David Higgenbotham **Tony Stuart** Johnny Holifield Andrew Sylte **Ed Hollingsworth** Tom Sylte I. Meade Hufford Michael Taylor Richard Ingram Stan Thieling Fred Katzenmeyer Sid Thompson Karl Kaufmann Watts Ueltshey Lars Johnson Janet Verret Joe Johnson Steve Walkinshaw

Ed Sticker

Claire Lamar Ricky Warren
Ed Leigh Joe White
Cody Lenert Mark Wyatt

**Howard Lowery** 

Frank Heitmuller

\*\*This list is updated monthly. Please contact Bill Bagnall if you have questions.

#### MILBIRD RESOURCES, LLC

Oil & Gas Exploration

#### Maurice N. Birdwell

Managing Partner
AAPG Certified Petroleum Geologist
Reg. Prof. Geol. Ark. La. Miss. Tex

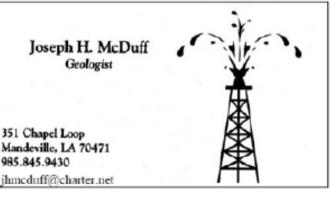
2043 Oak Ridge Drive Pearl, MS 39208 601.936.6939

mnbirdwell@comcast.net

#### Joe R. White, Jr.

Petroleum Geologist

8505 Dogwood Trail Haughton, LA 71037 Cell. 318-423-9828 Hm. 318-949-3539 Available for Consulting AAPG CPG #5580 MS RPG #0097 LA CPG #345


Jwhite1362@aol.com Joerjrw@gmail.com

#### PRUET OIL COMPANY LLC

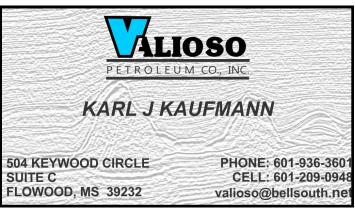
Oil & Gas Exploration

217 W. Capitol St. Jackson, MS 39201 601-948-5279

dcate@pruet.com






Jon Q=Petersen, President
Autie T. Orjias, V. P. / Land Manager
Dean Giles, Secretary / Treasurer
S. Cody Lenert, Geologist
Ryan Q=Petersen Land


(318) 222-8406 Fax (318) 222-6061

401 Edwards Street, Suite 1200 Shreveport, LA 71101

> P. O. Box 1367 Shreveport, LA 71164

Email: mei@marlinexploration.com





# **MGS PAST PRESIDENTS**

| 1939-1940 | Henry N. Toler        | 1973-1974  | Larry Walter               |
|-----------|-----------------------|------------|----------------------------|
| 1940-1941 | Urban B. Hughes       | 1974-1975  | W. E. "Gene" Taylor        |
| 1941-1942 | J. Tom McGlothlin     | 1975-1976  | Jerry E. Zoble             |
| 1942-1943 | Dave C. Harrell       | 1976-1977  | P. David Cate              |
| 1943-1944 | K. K. "Bob" Spooner   | 1977-1978  | Sarah Childress            |
| 1944-1945 | L. R. McFarland       | 1978-1979  | Les Aultman                |
| 1945-1946 | J. B. Story           | 1979-1980  | Philip R. Reeves           |
| 1946-1947 | Frederic F. Mellen    | 1980-1981  | Marshall Kern              |
| 1947-1948 | H. Lee Spyres         | 1981-1982  | Stephen Oivanki            |
|           | Robert D. Sprague     | 1982- 1983 | James W. "Buddy" Twiner    |
| 1948-1949 | Robert D. Sprague     | 1983- 1984 | Charles H. Williams        |
| 1949-1950 | E. T. ""Mike" Monsour | 1984- 1985 | C. Kip Ferns               |
| 1950-1951 | J. Tate Clark         | 1985-1986  | Steven S. Walkinshaw       |
|           | Charles E. Buck       | 1986-1987  | J. R. ""Bob" White         |
| 1951-1952 | George W. Field       | 1987-1988  | Harry Spooner              |
| 1952-1953 | James L. Md11in, Jr.  | 1988-1989  | Stanley King               |
| 1953-1954 | Wilbur H. Knight      | 1989-1990  | Stan Galicki               |
| 1954-1955 | A. Ed Blanton         | 1990-1991  | E. James Files, Jr.        |
| 1955-1956 | Gilbert A. Talley     | 1991-1992  | Stephen L. Ingram, Sr.     |
| 1956-1957 | Ben Ploch             | 1992-1993  | Michael Noone/Stanley King |
| 1957-1958 | Emil Monsour          | 1993-1994  | Brian Sims                 |
| 1958-1959 | Charles Brown         | 1994-1995  | C. W. "Neil" Barnes        |
| 1959-1960 | M. F. Kirby           | 1995-1996  | Lester Aultman             |
| 1960-1961 | Rudy Ewing            | 1996-1997  | Jack S. Moody              |
| 1961-1962 | Xavier M. Franscogna  | 1997-1998  | George B. Vockroth         |
| 1962-1963 | Robert B. Ross        | 1998-1999  | Rick L. Ericksen           |
| 1963-1964 | William A. Skees      | 1999-2000  | Stanley King               |
|           | Marvin Oxley          | 2000-2001  | John C. Marble             |
| 1964-1965 | James F. Bollman      | 2001-2002  | Andrew T. Sylte            |
| 1965-1966 | Sankey L. Blanton     | 2002-2003  | Aaron Lasker               |
| 1966-1967 | Alan Jackson          | 2003-2004  | John G. Cox                |
| 1967-1968 | Julius M. Ridgway     | 2004-2005  | James E. Starnes           |
| 1968-1969 | Edward D. Minihan     | 2005-2006  | Todd Hines                 |
| 1969-1970 | Kevin E. Cahill       | 2006-2007  | Bob Schneeflock            |
| 1970-1971 | John Lancaster        | 2007-2008  | Tony Stuart                |
| 1971-1972 | Larry Boland          | 2008-2009  | Lisa Ivshin                |
| 1972-1973 | Charles Barton        | 2009-2010  | Joe Johnson                |
| 1772 1770 | onarios barron        | 2010-2011  | Brian Sims                 |
|           |                       | 2011-2012  | Stanley King               |
|           |                       | 2012-2013  | Jim Files                  |
|           |                       | 2013-2014  | Neil Barnes                |
|           |                       | 2014-2015  | Ezat Heydari               |
|           |                       | 2015-2016  | Jack Moody                 |
|           |                       | 2016-2017  | Cragin Knox                |
|           |                       |            |                            |